4

Set 5: Exponential Functions (Intermediate)

Explanation

Answer: D

Solve for xx: 5e2x=1255e^{2x} = 125

A.

x=ln(125)2x = \frac{\ln(125)}{2}

B.

x=ln(25)x = \ln(25)

C.

x=252x = \frac{25}{2}

D.

x=ln(5)x = \ln(5)

✓ Correct

Detailed Explanation

Choice D is correct. Choice D is the correct answer. Isolate the exponential and solve. 1. Divide: e2x=1255=25e^{2 x} = \frac{125}{5} = 25. 2. Natural log: ln(e2x)=ln(25)\ln(e^{2 x}) = \ln(25). 3. Simplify: 2x=ln(25)=ln(52)=2ln(5)2x = \ln(25) = \ln(5^2) = 2\ln(5). 4. Solve: x=2ln(5)2=ln(5)x = \frac{2\ln(5)}{2} = \ln(5). 5. Verify: 5e2ln(5)=5eln(25)=5(25)=1255e^{2\ln(5)} = 5 e^{\ln(25)} = 5(25) = 125 ✓ Strategic Tip: Simplify logarithms using ln(an)=nln(a)\ln(a^n) = n\ln(a). Choice A is incorrect because ln(125)=ln(53)=3ln(5)\ln(125) = \ln(5^3) = 3\ln(5), giving x=3ln(5)2x = \frac{3\ln(5)}{2}. Choice B is incorrect because x=ln(25)x = \ln(25) gives e2x=e2ln(25)=625e^{2 x} = e^{2\ln(25)} = 625. Choice C is incorrect because this uses arithmetic instead of logarithms.

Key Steps:

The correct answer is x=ln(5)x = \ln(5)

Why others are wrong:
A: Choice A is incorrect and may result from a calculation error.
B: Choice B is incorrect and may result from a calculation error.
C: Choice C is incorrect and may result from a calculation error.

🎯 Keep Practicing!

Master all sections for your best SAT score