8
algebra

Solve: {4x2y=183x+y=14\begin{cases} 4x - 2y = 18 \\ 3x + y = 14 \end{cases}

A

(5,1)(5, 1)

B

(3,3)(3, -3)

C

(6,3)(6, 3)

D

(4,1)(4, -1)

Correct Answer: D

Choice D is the correct answer. We can use elimination by multiplying the second equation by 2.

Step 1: Multiply the second equation by 2: 6x+2y=286x + 2y = 28

Step 2: Add to the first equation: (4x2y)+(6x+2y)=18+28(4x - 2y) + (6x + 2y) = 18 + 2810x=4610x = 46x=4.6x = 4.6

Non-integer. - First: 4(4)2(1)=16+2=184(4) - 2(-1) = 16 + 2 = 18

  • Second: 3(4)+(1)=121=11 eq143(4) + (-1) = 12 - 1 = 11 \ eq 14

Step 1: Multiply second by 2: 6x+2y=226x + 2y = 22

Step 2: Add: 10x=4010x = 40x=4x = 4

Step 3: Substitute: 4(4)2y=184(4) - 2y = 18162y=1816 - 2y = 182y=2-2y = 2y=1y = -1

** 💡 Strategic Tip: Multiplying by 2 creates opposite coefficients for easy elimination.

Choice A is incorrect because4(5)2(1)=184(5) - 2(1) = 18 ✓, but 3(5)+1=16 eq113(5) + 1 = 16 \ eq 11.

Choice B is incorrect because4(3)2(3)=184(3) - 2(-3) = 18 ✓, but 3(3)+(3)=6 eq113(3) + (-3) = 6 \ eq 11.

Choice C is incorrect because4(6)2(3)=184(6) - 2(3) = 18 ✓, but 3(6)+3=21 eq113(6) + 3 = 21 \ eq 11.