9
algebra

Solve: {2x+5y=292x5y=11\begin{cases} 2x + 5y = 29 \\ 2x - 5y = 11 \end{cases}

A

(9,115)(9, \frac{11}{5})

B

(12,1)(12, 1)

C

(7,3)(7, 3)

D

(10,95)(10, \frac{9}{5})

Correct Answer: D

Choice D is the correct answer. The 5y5y terms are opposites, so we add the equations.

Step 1: Add the equations: (2x+5y)+(2x5y)=29+11(2x + 5y) + (2x - 5y) = 29 + 114x=404x = 40x=10x = 10

Step 2: Substitute x=10x = 10 into the first equation: 2(10)+5y=292(10) + 5y = 2920+5y=2920 + 5y = 295y=95y = 9y=95y = \frac{9}{5}

Solution: (10,95)(10, \frac{9}{5})

Verification: 2(10)5(95)=209=112(10) - 5(\frac{9}{5}) = 20 - 9 = 11

💡 Strategic Tip: Fractional answers appear frequently on standardized tests.

Choice A is incorrect because2(9)+5(115)=18+11=292(9) + 5(\frac{11}{5}) = 18 + 11 = 29 ✓, but 2(9)11=7 eq112(9) - 11 = 7 \ eq 11.

Choice B is incorrect because2(12)+5(1)=24+5=292(12) + 5(1) = 24 + 5 = 29 ✓, but 2(12)5(1)=19 eq112(12) - 5(1) = 19 \ eq 11.

Choice C is incorrect because2(7)+5(3)=14+15=292(7) + 5(3) = 14 + 15 = 29 ✓, but 2(7)5(3)=1415=1 eq112(7) - 5(3) = 14 - 15 = -1 \ eq 11.