7
algebra

Solve by elimination: {4x+3y=274x3y=13\begin{cases} 4x + 3y = 27 \\ 4x - 3y = 13 \end{cases}

A

(6,1)(6, 1)

B

(7,13)(7, -\frac{1}{3})

C

(5,73)(5, \frac{7}{3})

D

(8,53)(8, -\frac{5}{3})

Correct Answer: C

Choice C is the correct answer. The 3y3y terms are opposites, so we add the equations.

Step 1: Add the equations: (4x+3y)+(4x3y)=27+13(4x + 3y) + (4x - 3y) = 27 + 138x=408x = 40x=5x = 5

Step 2: Substitute x=5x = 5 into the first equation: 4(5)+3y=274(5) + 3y = 2720+3y=2720 + 3y = 273y=73y = 7y=73y = \frac{7}{3}

Solution: (5,73)(5, \frac{7}{3})

Verification: 4(5)3(73)=207=134(5) - 3(\frac{7}{3}) = 20 - 7 = 13

💡 Strategic Tip: Opposite coefficients make addition the ideal elimination strategy.

Choice A is incorrect because4(6)+3(1)=24+3=274(6) + 3(1) = 24 + 3 = 27 ✓, but 4(6)3(1)=243=21 eq134(6) - 3(1) = 24 - 3 = 21 \ eq 13.

Choice B is incorrect because4(7)3(13)=28+1=29 eq134(7) - 3(-\frac{1}{3}) = 28 + 1 = 29 \ eq 13.

Choice D is incorrect because4(8)+3(53)=325=274(8) + 3(-\frac{5}{3}) = 32 - 5 = 27 ✓, but 4(8)3(53)=32+5=37 eq134(8) - 3(-\frac{5}{3}) = 32 + 5 = 37 \ eq 13.