3
algebra

Solve by elimination: {5x+2y=235x2y=17\begin{cases} 5x + 2y = 23 \\ 5x - 2y = 17 \end{cases}

A

(5,1)(5, -1)

B

(3,4)(3, 4)

C

(4,32)(4, \frac{3}{2})

D

(6,72)(6, -\frac{7}{2})

Correct Answer: C

Choice C is the correct answer. The 2y2y terms are opposites (+2y+2y and 2y-2y), so we can add the equations to eliminate yy.

Step 1: Add the two equations: (5x+2y)+(5x2y)=23+17(5x + 2y) + (5x - 2y) = 23 + 1710x=4010x = 40x=4x = 4

Step 2: Substitute x=4x = 4 into the first equation: 5(4)+2y=235(4) + 2y = 2320+2y=2320 + 2y = 232y=32y = 3y=32y = \frac{3}{2}

Solution: (4,32)(4, \frac{3}{2})

Verification: 5(4)2(32)=203=175(4) - 2(\frac{3}{2}) = 20 - 3 = 17

💡 Strategic Tip: Opposite coefficients signal that addition will eliminate the variable cleanly.

Choice A is incorrect because5(5)+2(1)=252=235(5) + 2(-1) = 25 - 2 = 23 ✓, but 5(5)2(1)=25+2=27 eq175(5) - 2(-1) = 25 + 2 = 27 \ eq 17.

Choice B is incorrect because5(3)+2(4)=15+8=235(3) + 2(4) = 15 + 8 = 23 ✓, but 5(3)2(4)=158=7 eq175(3) - 2(4) = 15 - 8 = 7 \ eq 17.

Choice D is incorrect because5(6)2(72)=30+7=37 eq175(6) - 2(-\frac{7}{2}) = 30 + 7 = 37 \ eq 17.