8
algebra

Solve: {3x+4y=253x4y=11\begin{cases} 3x + 4y = 25 \\ 3x - 4y = 11 \end{cases}

A

(5,2.5)(5, 2.5)

B

(7,1)(7, 1)

C

(4,3.25)(4, 3.25)

D

(6,74)(6, \frac{7}{4})

Correct Answer: D

Choice D is the correct answer. The 4y4y terms are opposites, so we add the equations.

Step 1: Add the equations: (3x+4y)+(3x4y)=25+11(3x + 4y) + (3x - 4y) = 25 + 116x=366x = 36x=6x = 6

Step 2: Substitute x=6x = 6 into the first equation: 3(6)+4y=253(6) + 4y = 2518+4y=2518 + 4y = 254y=74y = 7y=74y = \frac{7}{4}

Solution: (6,74)(6, \frac{7}{4})

Verification: 3(6)4(74)=187=113(6) - 4(\frac{7}{4}) = 18 - 7 = 11

💡 Strategic Tip: Don't avoid fractional answers—they're common on the SAT.

Choice A is incorrect because3(5)+4(2.5)=15+10=253(5) + 4(2.5) = 15 + 10 = 25 ✓, but 3(5)4(2.5)=1510=5 eq113(5) - 4(2.5) = 15 - 10 = 5 \ eq 11.

Choice B is incorrect because3(7)+4(1)=21+4=253(7) + 4(1) = 21 + 4 = 25 ✓, but 3(7)4(1)=214=17 eq113(7) - 4(1) = 21 - 4 = 17 \ eq 11.

Choice C is incorrect because3(4)+4(3.25)=12+13=253(4) + 4(3.25) = 12 + 13 = 25 ✓, but 3(4)13=1 eq113(4) - 13 = -1 \ eq 11.