3
algebra

Solve by elimination: {4x+y=184xy=10\begin{cases} 4x + y = 18 \\ 4x - y = 10 \end{cases}

A

(6,6)(6, -6)

B

(4,2)(4, 2)

C

(5,2)(5, -2)

D

(3.5,4)(3.5, 4)

Correct Answer: D

Choice D is the correct answer. The yy terms are opposites (+y+y and y-y), so we can add the equations to eliminate yy.

Step 1: Add the two equations: (4x+y)+(4xy)=18+10(4x + y) + (4x - y) = 18 + 108x=288x = 28x=288=72=3.5x = \frac{28}{8} = \frac{7}{2} = 3.5

Step 2: Substitute x=3.5x = 3.5 into the first equation: 4(3.5)+y=184(3.5) + y = 1814+y=1814 + y = 18y=4y = 4

Solution: (3.5,4)(3.5, 4)

Verification: 4(3.5)4=144=104(3.5) - 4 = 14 - 4 = 10

💡 Strategic Tip: Opposite coefficients make elimination by addition very efficient.

Choice A is incorrect because4(6)+(6)=246=184(6) + (-6) = 24 - 6 = 18 ✓, but 4(6)(6)=24+6=30 eq104(6) - (-6) = 24 + 6 = 30 \ eq 10.

Choice B is incorrect because4(4)+2=16+2=184(4) + 2 = 16 + 2 = 18 ✓, but 4(4)2=162=14 eq104(4) - 2 = 16 - 2 = 14 \ eq 10.

Choice C is incorrect because4(5)(2)=20+2=22 eq104(5) - (-2) = 20 + 2 = 22 \ eq 10.