9
algebra

Solve: {2x+3y=172x3y=7\begin{cases} 2x + 3y = 17 \\ 2x - 3y = 7 \end{cases}

A

(5,73)(5, \frac{7}{3})

B

(7,1)(7, 1)

C

(6,53)(6, \frac{5}{3})

D

(4,3)(4, 3)

Correct Answer: C

Choice C is the correct answer. The 3y3y terms are opposites, so we add the equations.

Step 1: Add the equations: (2x+3y)+(2x3y)=17+7(2x + 3y) + (2x - 3y) = 17 + 74x=244x = 24x=6x = 6

Step 2: Substitute x=6x = 6 into the first equation: 2(6)+3y=172(6) + 3y = 1712+3y=1712 + 3y = 173y=53y = 5y=53y = \frac{5}{3}

Solution: (6,53)(6, \frac{5}{3})

Verification: 2(6)3(53)=125=72(6) - 3(\frac{5}{3}) = 12 - 5 = 7

💡 Strategic Tip: Don't be afraid of fractional answers—they're common on the SAT.

Choice A is incorrect because2(5)+3(73)=10+7=172(5) + 3(\frac{7}{3}) = 10 + 7 = 17 ✓, but 2(5)3(73)=107=3 eq72(5) - 3(\frac{7}{3}) = 10 - 7 = 3 \ eq 7.

Choice B is incorrect because2(7)+3(1)=14+3=172(7) + 3(1) = 14 + 3 = 17 ✓, but 2(7)3(1)=143=11 eq72(7) - 3(1) = 14 - 3 = 11 \ eq 7.

Choice D is incorrect because2(4)+3(3)=8+9=172(4) + 3(3) = 8 + 9 = 17 ✓, but 2(4)3(3)=89=1 eq72(4) - 3(3) = 8 - 9 = -1 \ eq 7.