1
algebra

Maximize P=x+yP = x + y subject to yx+4y \leq -x + 4, yx+2y \leq x + 2, y0y \geq 0.

A

44

B

33

C

66

D

22

Correct Answer: A

Choice A is the correct answer. Find vertices and evaluate.

  1. Intersection 1: y=x+4y = -x + 4 and y=x+2y = x + 2. x+2=x+42x=2x=1,y=3x + 2 = -x + 4 \rightarrow 2x = 2 \rightarrow x = 1, y = 3. Vertex (1,3)(1, 3).
  2. Intersection 2: y=x+4y = -x + 4 and y=0y = 0. x=4x = 4. Vertex (4,0)(4, 0).
  3. Intersection 3: y=x+2y = x + 2 and y=0y = 0. x=2x = -2. Vertex (2,0)(-2, 0).
  4. Evaluate P:
    • (1,3):1+3=4(1, 3): 1 + 3 = 4
    • (4,0):4+0=4(4, 0): 4 + 0 = 4
    • (2,0):2+0=2(-2, 0): -2 + 0 = -2
  5. Max: 4

?�� Strategic Tip: Sometimes multiple vertices give the same optimal value (multiple solutions).

Choice B is incorrect.Choice C is incorrect.Choice D is incorrect.