10
advanced-math

Final challenge: If ex+ex=5e^x + e^{-x} = 5, what is exexe^x - e^{-x}? (Hint: use (a+b)2(ab)2=4ab(a+b)^2 - (a-b)^2 = 4ab)

A

±21\pm\sqrt{21}

B

33

C

44

D

±26\pm 2\sqrt{6}

Correct Answer: A

Choice A is the correct answer. Use the algebraic identity.

  1. Let: a=exa = e^x and b=exb = e^{-x}, so a+b=5a + b = 5.
  2. Note: ab=exex=e0=1ab = e^x \cdot e^{-x} = e^0 = 1.
  3. Identity: (a+b)2(ab)2=4ab(a+b)^2 - (a-b)^2 = 4ab.
  4. Substitute: 25(ab)2=4(1)=425 - (a-b)^2 = 4(1) = 4.
  5. Solve: (ab)2=21(a-b)^2 = 21, so ab=±21a - b = \pm\sqrt{21}.
  6. Wait: Let me verify this using a different method.

Alternatively: (ex+ex)2=e2x+2+e2x=25(e^x + e^{-x})^2 = e^{2x} + 2 + e^{-2x} = 25e2x+e2x=23e^{2x} + e^{-2x} = 23

(exex)2=e2x2+e2x=232=21(e^x - e^{-x})^2 = e^{2x} - 2 + e^{-2x} = 23 - 2 = 21exex=±21e^x - e^{-x} = \pm\sqrt{21}

So the answer is A, not D!

💡 Strategic Tip:(a±b)2=a2±2ab+b2(a \pm b)^2 = a^2 \pm 2ab + b^2.