Choice D is the correct answer. Isolate the exponential and solve.
- Divide: e2x=5125=25.
- Natural log: ln(e2x)=ln(25).
- Simplify: 2x=ln(25)=ln(52)=2ln(5).
- Solve: x=22ln(5)=ln(5).
- Verify: 5e2ln(5)=5eln(25)=5(25)=125 ✓
💡 Strategic Tip: Simplify logarithms using ln(an)=nln(a).
Choice A is incorrect becauseln(125)=ln(53)=3ln(5), giving x=23ln(5).
Choice B is incorrect becausex=ln(25) gives e2x=e2ln(25)=625.
Choice C is incorrect because this uses arithmetic instead of logarithms.