7
advanced-math

Solve for xx: 5e2x=1255e^{2x} = 125

A

x=ln(125)2x = \frac{\ln(125)}{2}

B

x=ln(25)x = \ln(25)

C

x=252x = \frac{25}{2}

D

x=ln(5)x = \ln(5)

Correct Answer: D

Choice D is the correct answer. Isolate the exponential and solve.

  1. Divide: e2x=1255=25e^{2x} = \frac{125}{5} = 25.
  2. Natural log: ln(e2x)=ln(25)\ln(e^{2x}) = \ln(25).
  3. Simplify: 2x=ln(25)=ln(52)=2ln(5)2x = \ln(25) = \ln(5^2) = 2\ln(5).
  4. Solve: x=2ln(5)2=ln(5)x = \frac{2\ln(5)}{2} = \ln(5).
  5. Verify: 5e2ln(5)=5eln(25)=5(25)=1255e^{2\ln(5)} = 5e^{\ln(25)} = 5(25) = 125

💡 Strategic Tip: Simplify logarithms using ln(an)=nln(a)\ln(a^n) = n\ln(a).

Choice A is incorrect becauseln(125)=ln(53)=3ln(5)\ln(125) = \ln(5^3) = 3\ln(5), giving x=3ln(5)2x = \frac{3\ln(5)}{2}. Choice B is incorrect becausex=ln(25)x = \ln(25) gives e2x=e2ln(25)=625e^{2x} = e^{2\ln(25)} = 625. Choice C is incorrect because this uses arithmetic instead of logarithms.