5
advanced-math

Solve for xx: e3x=8e^{3x} = 8

A

x=ln(8)3x = \frac{\ln(8)}{3}

B

x=3ln(8)x = 3\ln(8)

C

x=83x = \frac{8}{3}

D

x=ln(8)3x = \ln(8) - 3

Correct Answer: A

Choice A is the correct answer. Use natural logarithm to solve.

  1. Take natural log: ln(e3x)=ln(8)\ln(e^{3x}) = \ln(8).
  2. Simplify: 3x=ln(8)3x = \ln(8) (since ln(ea)=a\ln(e^a) = a).
  3. Solve: x=ln(8)3x = \frac{\ln(8)}{3}.
  4. Numerical: ln(8)2.079\ln(8) \approx 2.079, so x0.693x \approx 0.693.

💡 Strategic Tip: Natural log is the inverse of exe^x: ln(ex)=x\ln(e^x) = x.

Choice B is incorrect because this multiplies by 3 instead of dividing. Choice C is incorrect because logarithms are needed, not simple division. Choice D is incorrect because subtraction is wrong.