3
advanced-math

Which is equivalent to 272x27^{2x}?

A

36x3^{6x}

B

93x9^{3x}

C

33x3^{3x}

D

81x81^x

Correct Answer: A

Choice A is the correct answer. Rewrite with base 3.

  1. Rewrite: 27=3327 = 3^3, so 272x=(33)2x27^{2x} = (3^3)^{2x}.
  2. Power rule: (am)n=amn(a^m)^n = a^{mn}, so (33)2x=36x(3^3)^{2x} = 3^{6x}.
  3. Verify Choice B: 93x=(32)3x=36x9^{3x} = (3^2)^{3x} = 3^{6x} ✓ (Also equivalent!)

💡 Strategic Tip: Multiple representations can be correct—check all options.

Choice C is incorrect because33x=(33)x=27xeq272x3^{3x} = (3^3)^x = 27^x eq 27^{2x}. Choice D is incorrect because81x=(34)x=34xeq36x81^x = (3^4)^x = 3^{4x} eq 3^{6x}.