9
advanced-math

If e2x=50e^{2x} = 50, what is exe^x?

A

507.07\sqrt{50} \approx 7.07

B

2525

C

100100

D

5050

Correct Answer: A

Choice A is the correct answer. Use properties of exponents.

  1. Given: e2x=50e^{2x} = 50.
  2. Rewrite: e2x=(ex)2=50e^{2x} = (e^x)^2 = 50.
  3. Solve: ex=50=25×2=527.07e^x = \sqrt{50} = \sqrt{25 \times 2} = 5\sqrt{2} \approx 7.07.

💡 Strategic Tip:(am)n=amn(a^m)^n = a^{mn}, so e2x=(ex)2e^{2x} = (e^x)^2.

Choice B is incorrect because(ex)2=50(e^x)^2 = 50, not ex=25e^x = 25. Choice C is incorrect because this would give e2x=10000e^{2x} = 10000. Choice D is incorrect becauseexeqe2xe^x eq e^{2x}.