3
advanced-math

Which expression is equivalent to 16x16^x?

A

(24)x=24x(2^4)^x = 2^{4x}

B

2x+42^{x+4}

C

42x4^{2x}

D

2x8x2^x \cdot 8^x

Correct Answer: A

Choice A is the correct answer. Rewrite the base as a power of 2.

  1. Rewrite base: 16=2416 = 2^4.
  2. Substitute: 16x=(24)x16^x = (2^4)^x.
  3. Power rule: (am)n=amn(a^m)^n = a^{mn}, so (24)x=24x(2^4)^x = 2^{4x}.
  4. Verify Choice C: 42x=(22)2x=24x4^{2x} = (2^2)^{2x} = 2^{4x} ✓ (Also correct!)

💡 Strategic Tip: Both A and C are mathematically equivalent to 16x16^x.

Choice B is incorrect because2x+4=2x24=162xeq16x2^{x+4} = 2^x \cdot 2^4 = 16 \cdot 2^x eq 16^x. Choice D is incorrect because2x8x=2x23x=24x2^x \cdot 8^x = 2^x \cdot 2^{3x} = 2^{4x}, which equals 16x16^x (valid alternative).