2

Set 13: Linear Inequalities

Explanation

Answer: A

Maximize P=4x+3yP = 4x + 3y subject to 2x+y102x + y \leq 10, x+2y8x + 2y \leq 8, x,y0x, y \geq 0.

A.

2222

✓ Correct
B.

2020

C.

1818

D.

2424

Detailed Explanation

Choice A is correct. Choice A is the correct answer. Find vertices of the feasible region. 1. Intersection of lines: 2x+y=102x + y = 10 and x+2y=8x + 2 y = 8. - Multiply second by -2: 2x4y=16-2 x - 4 y = -16 - Add to first: 3y=6y=2-3 y = -6 \rightarrow y = 2 - Find x: x+2(2)=8x=4x + 2(2) = 8 \rightarrow x = 4. Vertex (4, 2). 2. Intercepts: - 2x+y=10(5,0)2x + y = 10 \rightarrow (5, 0) and (0,10)(0, 10). - x+2y=8(8,0)x + 2 y = 8 \rightarrow (8, 0) and (0,4)(0, 4). - Feasible region vertices: (0,0),(5,0)(0,0), (5,0) is OUT (fails x+2y8x+2 y \leq 8), (4,0)(4,0) is IN? No, wait. - Check intercepts against other inequalities: - (5,0)(5,0): 5+2(0)=585+ 2(0) = 5 \leq 8 (Valid). So (5,0)(5,0) is a vertex? Wait. 2(5)+0=102(5)+0=10. Yes. - (0,4)(0,4): 2(0)+4=4102(0) + 4 = 4 \leq 10 (Valid). So (0,4)(0,4) is a vertex. 3. Vertices: (0,0),(5,0),(4,2),(0,4)(0,0), (5,0), (4,2), (0,4). 4. Evaluate P: - (0,0):0(0,0): 0 - (5,0):4(5)+3(0)=20(5,0): 4(5) + 3(0) = 20 - (4,2):4(4)+3(2)=16+6=22(4,2): 4(4) + 3(2) = 16 + 6 = 22 - (0,4):4(0)+3(4)=12(0,4): 4(0) + 3(4) = 12 5. Maximum: 22. Strategic Tip: The intersection of the boundary lines is often the optimal point. Choice B is incorrect. Choice C is incorrect. Choice D is incorrect.

Key Steps:

The correct answer is 2222

Why others are wrong:
B: Choice B is incorrect and may result from a calculation error.
C: Choice C is incorrect and may result from a calculation error.
D: Choice D is incorrect and may result from a calculation error.

🎯 Keep Practicing!

Master all sections for your best SAT score