2

Set 7: Exponential Functions (Intermediate)

Explanation

Answer: A

Final challenge: If ex+ex=5e^x + e^{-x} = 5, what is exexe^x - e^{-x}? (Hint: use (a+b)2(ab)2=4ab(a+b)^2 - (a-b)^2 = 4ab)

A.

±21\pm\sqrt{21}

✓ Correct
B.

33

C.

44

D.

±26\pm 2\sqrt{6}

Detailed Explanation

Choice A is correct. Choice A is the correct answer. Use the algebraic identity. 1. Let: a=exa = e^x and b=exb = e^{-x}, so a+b=5a + b = 5. 2. Note: ab=exex=e0=1ab = e^x \cdot e^{-x} = e^0 = 1. 3. Identity: (a+b)2(ab)2=4ab(a+b)^2 - (a-b)^2 = 4 ab. 4. Substitute: 25(ab)2=4(1)=425- (a-b)^2 = 4(1) = 4. 5. Solve: (ab)2=21(a-b)^2 = 21, so ab=±21a - b = \pm\sqrt{21}. 6. Wait: Alternatively: (ex+ex)2=e2x+2+e2x=25(e^x + e^{-x})^2 = e^{2 x} + 2 + e^{-2 x} = 25 e2x+e2x=23e^{2 x} + e^{-2 x} = 23 (exex)2=e2x2+e2x=232=21(e^x - e^{-x})^2 = e^{2 x} - 2 + e^{-2 x} = 23 - 2 = 21 exex=±21e^x - e^{-x} = \pm\sqrt{21} So the answer is A, not D! Strategic Tip: (a±b)2=a2±2ab+b2(a \pm b)^2 = a^2 \pm 2 ab + b^2.

Key Steps:

The correct answer is ±21\pm\sqrt{21}

Why others are wrong:
B: Choice B is incorrect and may result from a calculation error.
C: Choice C is incorrect and may result from a calculation error.
D: Choice D is incorrect and may result from a calculation error.

🎯 Keep Practicing!

Master all sections for your best SAT score